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SHELLS AND

PANELS MOVING IN A FLOW OF GAS*

~ R. D. Stepanov

The equations of shells are taken in the form of the general techni-
cal theory of shallow shells (ref. 1) and shells of medium length of
V. Z. Vla60v (ref. 2) . The aerodynamic forces acting on a shell are
taken into account only as forces of excess pressure according to the
formula urouosedby A. A. Iliushin (ref. 3). In this work the followitig-
notation-is-used: ‘u and j3 are
on the cylindrical surface of the
in terms of radius R, represents
B represents the central angle.

. the radius, thickness, and length
p are Young’s modulus, poisson’s
material of the shell, and D is

dimensionless coordinates of a point -
shell. The coordinate a, expressed
the distance along a generator, and
The dimensions R, h, and 2 are
of the cylindrical shell; E, U, and
coefficient, and the density of the
the cylindrical rigidity. The quanti-

U
ties u, v, and w &e components of the vector of displacement of the
shell, V is the velocity of flow, VO is the velocity of sound at

infinity, P. is the pressure of the gaseous medium at infinity, and K

is the exponent of polytropy. The symbol u = P + iq is the complex
frequency, and c and B are constants. Also,

C2 = h2 D=
Eh3

B= Po ~ va.~+~
~2 12(1 - 02) &.2 apa

The quantity B1 is the coefficient of damping, and Z iS the trans-

verse component of the load.

1. INITIAL RELATIONS OF THE THEORY OF CYLINDRICAL SHELLS

In the system of dimensionless coordinates a,p, in the case when
at each point-a load directed along the normal to the surface acts on

*,,
O Flattere ~silindric%eski~ Obolo~hek i PaneleY, Dvi2hu=M~sia

V Potoke Gaza.” PrililadnaiaMatematika i Mekhanika, vol. 21, no. 5, 1957,
pp. 6U-657.

●
NACA Reviewer’s note: The original Russian publication contains cer-

tain typographical errors and obvious omissions in equations that have been
corrected without comment.
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the sheU (X . Y . 0, Z ~“(l),the fundamental equation of shallow cylin-
drical shells in a form convenient for solution is (ref. 1):

.-
.

where @(a,P) is a scalar function,

-.

w= V2 V2 a

(1.1)

defined according to the formlas

(1.2)

.

The internal forces of shallow cylindrical shells are defined through”
the function ~(a,~) by the following group of formulas: .

Generalized transverse forces defined in the sense of firchoff being
necesssry for the formulation of the boundary conditions, are computed
according to the formulas

r
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[ 1D~+(2. c)_&_Q1* =-—— VP VP 0
~3 &3 h ap2

[ 1

(1.4)

1

Q2*=-@&2-”l~v*v2Q
&L%p

The positive directions of the forces and moments are shown in fig. 1.

& this work an approximate theory for the calculation of cylindri-
cal shells of medium length (ref. 2) will be widely used.

In the system of dimensionless coordinates a,13, with X = Y = O
but Z # 0, the fundamental equation of cylindrical shells of medium
length, in the conveniently solvable form, is:

Here the function ~(a,p) is defined by the formulas

The internal
expressed through
formulas:

a%l
u=—

h afi2

Al 1v=-
ap3

a%l
w =—

afi4 I
forces of cylindrical shells of medium length
the function O1(m,~) by the following group

(1.5)

(1.6)

are
of
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\

> (1.7)

In each particular case, it is necessary to adjoin given boundary con-
ditions on the edges of the shell to the differential eqpations (1.1)
or (1.7).

the

and

2. STATEMENT OF THE PROBLEM

The expression for the transverse load Z acting on an element of’
surface of the shell is composed of two parts: the force of inertia

the
along a

force of aerodynamic action of the supersonic
generator and flowing around the shell on the

is taken into account according to the
(ref. 3):

—

(2.1)

..

.

.

.

flow directed
outside, which

formula proposedby A.-A. ILLushin

‘1 i% (2.2)

Substituting expression (2.2) into equation (1.1) and taking into
account the third of the relations in the group (1.2) yields the differ-
ential equation of small vibrations of shallow cylindrical shells:

.

.
--
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Correspondingly, substituting the
in equation (1.5) and taking into

expression for the external load Z
account the third relation of group (1.6)

gives the equation of small vibrations of cylindrical
length:

The new dimensionless quantity

2 =2
C* =—=

h2

1- ~2 U2#(l - @

is introduced in equations (2.3) and (2.4).

shells of medium

B1R2 a5@1 . ~

M at aj34
(2.4)

(2.5)

In all of the following calculations Bl will be taken equal to B.

In 1954, under the guidance of A. A. Iliushin, an investigation was
made (refs. 4 snd ~) of the self-induced vibrations of a plate moving in
~ gas> which def~ed in ~IW respects ~ approach and methods of sol”ution
of the problem set down; certain results borrowed from the indicated
works will be introduced below without derivation.

Examined in this paper is a class of solutions of the form

@(~,P,t) = *(u,13)e@ (2.6)

where m = p + iq is a constant complex frequency.

In the class of solutions (2.6), the problem of flutter consists
in determining the least velocity of flow (this vekcity will be called
the critical velocity), which on being exceeded would result in a posi-
tive real part of the complex frequency.

Substituting eqmtion (2.6) into equation

ce3Ung euh,

Here

(2 .3) gives, after can-

Vh. o (2.7)

(2.8)
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.

Equation (2.8)
values of frequency

For certain
a pure imaginary

permits us, for each particular eigenvalue A, two
to be defined: .

%2=-&’ p)’=jj”a (2.9)

eigenvdues, let one of the roots of equation (2.9) be
number. Then from equti.on (2.8) i.t is easy to obtain

(2.10)

On the complex plane A1,A2, equation (2.10) represents the points *

of the square parabola (fig. 21*

●

Al = ~&@2 (2.11)
B2R

which, following the example of references k and 5, is called the para-
bola of stability. The region lying inside the psrabola of stability
corresponds to the eigenvalues for which the roots (2.9) have a negative
real part,‘while the region lying outside the parabola corresponds to
eigenmlues for which the real parts of one of the roots (2.9) has a
positive real part.

3. UNBOUNDEDCLOSED CYLINDRICAL SHILL ‘-

—

For the case of an unbounded closed cylindrical she-~, the solution
of the fu.ndsmentaldifferential equation of small vtbratlons (2.7} will
be sought in the form

— —
w m

W(a,13)= H ~hei(n!3+kd (3.1).
n=l k=l

*Translator’s note: This apparently refers to fi~e 2 of refer-
erences 4 and 5 which is included with the figures of this paper for a

the convenience of the reader.

.
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where Ck,n is a certain constant number and n and k me constant

numbers denoting the number of half waves in the meridional direction
and in the direction of the generators of the shell.

Substituting eqy.ation(3.1) into equation (2.7),
teristic equation from which the following expression

Al = c*2(# + n2)2+ &

(# + n2)2

~ =-~k

1

yields a charac-
for A results:

(3 .2)

On the complex pl=e Al,$ equation (3.2) represents points of a

parabola of the eighth power:

1

-2
h22 + n2 (3.3)

For the determination of the critical velocity of flow, an analysis
is made of the problem of the mutual arrangement of the parabola (3.3)
with the p~abola of stability (2.11.)in the cases n . 0 and n # O.
For n . 0 (that is, for the case when the contour of a transverse sec-
tion of the shell remains a circle in the process of deformation) equa-
tions (3.2) take the form:

Al 24+1=c*k

b=-gk

\

(3.4)

For the points of mtual intersection of the parabola (3.4) with
the parabola of stability, the equalities

are valid.

R2q2 =

1

c*2k4 -1-1
‘T

FR2 BVRk
Kq=K

(3*5)
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Eliminating from the first of equations (3.5) the parameter q
yields one equation for the determination of the points of mutual inter-

.

section of the two parabolas being investigated:
—

k!-p*k2+J-=o “-
EC*2 2

C*

-.

(3.6) —

the solution of which will be -

-*{5&---,-j”2j”2(,.,,
‘1,2,3,4 -

From equation (3.7), it follows that,

()~~* 1/2
V*> —

P

—

the parabola (3.4), intersecting with the parabola of=stability in four
‘points,extends outside the domain of stability. Hence, it follows”tfit

for a velocity of flow larger than (2Ec*~p)1/2, the motion of the shell

must be unstable.
—.. —

For the investigation of the problem of”the mutual intersection of
the parabola of stability with the parabola (3.3), in the general case
for n # O the following equation is obtained:

(
V2

)(
k8+k64n2-p — +k!6n4 +-1

)

2P= +
—-

lJc*2 2C* EC*2

( )l?4n6-pn4-_L+n8.0
EC*2

—

(3.9i

Solution of equation (3.9) gives the e@ht roots:
e

ki = fin2
[[
-a * (a2 - 4b + 8n4)1/~ & ;.- .-

[[ 1}

-1/2 .-

-a * a2 - Lb + 8n~ 1’2)2- 16n4 (3.10) -.
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where
.

s.= 4#. p_&
EC*2

I

(3 .11)

b= ~2a+_L- ~n4
C*2

Similarly to that which was done above for the case n . 0, it is
possible here also to show that the necessary and sufficient conditions
for which the parabola (3.3) intersects with the parabola of stability,
and hence falls outside the domain of stability, reduce to the deter-
mination of the condition of the appearance of complex roots of equa-
tion (3.10).

Analyzing the expression (3.10), it is possible to set down the two
following essentially distinct necessary and sufficient conditions that

. the parabola (3.3) intersect with the parabola of stability, and hence,
extend beyond the domain of stability:

. \

ip - 2V44b+8n4=P—-
E2C*4

In expressions (3.12)

.

a.

2L20, -a * (82 - hb + 8n4~L~2 < 4n2
C*2

(3.12)

it is necessary to satis~ the inequality

(3.13)
Ec*’

The inequalities (3.12) and (3.13) make it possible to determine
the critical velocities:

v* 2 ()2EC* 1/2
P ) n <+ (C*)-1/2

“%

[ 1
V* > & ~(16n4c*2 + 1) 1’2

(3.14)

(3.15)

The formula for the critical velocity (3.14) identically coincides
with the critical velocity of flow found for a closed cylindrical shell
with n . 0, and, as is seen from the inequality (3.13), it may be used
for all values n< ~ which, for thin sheld.s,corresponds to the number
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of half waves n - 30 to ~, that is, to such a large nuder of hdf -
waves that the form of the transverse section differg little from a ..

“
-.

circle.

The minimum velocity (3.15), according to n, takes place for

n= L ,*--V2
2

smd exactly coincides with the critical velocity found

above for n = O.

From this analysis it follows that flutter of a closed cylindrical
.—

shell of infinite length in a supersonic flow can possibly take place
..

for velocities of flow V > (2Ec*/p)1/2
—

wh–enthe fo~ of the transverse
section remains circular.

Using the formulas (2.9) end (3.2), It is possible to obta”titwo
values of frequency whose essential form depends on the velocity of
flow:

[ [.

.

&2- ~4 1]
1/2

?,2 =-&* ()
A c*2(l# + n2)2 +

2ph @2 (l#+n2)z+%i ‘“ ●

(3.16)

The solution of the differential equation of small vibrations of .
shallow shells

si~ifies that
traveling with

(2.3), taken in the form-
—

Q(u, p;t) = ei(l@i-lKL)e(p+-i.q)t (3.17)

along the generators of the shell are propagated waves
the velocity

9Vb ..k (3.18)

Separating the real part of the complex frequency (eq.(3.16)) from”
the imaginary part yields

2

+ n2)2 +
#

‘~1
}

+ B%2k2 ~~z -

+ n2 h2p2R2

1/2

&

11}

(3.19)
(k? + n2)2
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Using formula
wave is determined

f

~~i19$, the velocity
= o:

of propagation of a traveling

Vb ,2U+ k2 + B’ ‘/2

{[
=*A*

PR2 k2 (k’ + n2)2 1}4p2h2k’

The minimum velocity of propagation of a traveling wave

Here, it has the value

[

= 2Ec*2
vb —-
min

e’

4. UNBOUNDEDCYLINDRICAL PANEL,

-4

B2

1

1/2

l+p2h2k2

SIMPLY SUPPORTED

occurs for

(3.20)

(3.21)

ALONG ITS

GENERATORS

In the case of an unbounded cylindrical panel, simply supported along
its generators, the differential equations of small vibrations (2.3) must
be accompanied by

u =W= o

the boundary conditions:

N2. ~=0 at~=Oand~.~l=s/%

Defining, according to fornml.as(1.2) and 1.3), the displacements
and internal forces of the shell through a potential function 0, it is
possible to write the boundary conditions on the edges p = O, p . PI

in the form

(4.2)

Representing the solution of the indicated boundary-value problem
in the form
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.
—

—.
C9 cm

@(a,p,t) = 11 Ah sin ~ eibeut
&l

(4.3) ‘-.
H na

and producing calculations analogous to those which were mentioned above
for ~he gene~al case n
of flow, as follows:

[(

~1 E 16 nkfihv*~__
2rlYcp

d

~ O, giv;s the formula for the critical velocLty

C*2 + .]”2=E(*+ 4,2$.2]”2
(4.4)

At R~aJ,
—-

atn. i (4.5) -

.

Formula (4.5) coincides with the critical velocity of flow for an
infinite plate, simply supported along the edge parallel to the direc-
tion of flow, which was obtained first in reference 4.

*Omitting all intermediate calculations, we quote the formula of
the critical velocity of flow for the unbounded closed-cylindrical shell,
found from consideration of the differential equation of small vibratias
of cylindrical shells of medium length (2.4):

V*, p c*(l - *)]1’2 (4.6)

It is possible to make use of formula (4.6) for all values of
~>ao From this formula it follows, that for n = CO,the critical
velocity of an unbounded closed cylindrical shell of medium length coin-
cides with the velocity of the unbounded closed cylindrical shell found
starting from the theory of shalluw shells.

*Translator’s note: T%is paragraph and..theone fo~owtng seem~s- -
placed. They were probably intended to conclude the preceding section.
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~ . FLUTTER OF CLOSED CYLINDRICAL SKEWS OF BOUNDED LENGTH

FOR DII?FERENTEOUNDARY CONDITIONS ON THE ENDS

The equation of small vibrations of shells of
is used to examine a series of boundary problems.
is introduced a new variable ~, connected with a

1
Rga=—

medium length (2.4)
In this examination
by the fortia

(5.1)

Then in a form convenient for solution, the equation of small vibration
(2.4) is written

(5.2)

To equation (5.2), in each particular case, must be added boundary
#conditionson the ends 5 = O and ~ = 1.

By defining, according to formulas (1.6) and (1.7), the displacements
and internal forces of the shell through al, the boundary conditions for

the boundary Troblems may be represented in the following forms:

(a) For a shell simply supported on the ends & = 0,~ = 1:

(b) For a shell clamped on the ends ~ .0 and ~ .1:

(5.4)

(c) For a shell simply supported on the end g = 1 and rigidly
clamped on the edge 5 . 0:
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.

.

(d) For a shell clamped on the end ~ = O and force on the end
E 1:=

.

(l%om the second group of relations it is seen that the
ditions on the free end are partially satisfied.)

(e) For a shell simply supported on the end ~ = O
the edge ~ = 1:

boundary con-

and free on

>

.

For the class of solutions

(5.8)-

equation (5.2) is written after a series of simple transformations,
in the form —

d4xk ~4 dxk
[

+ c12(n2 - 1
l)2n4 - ~4 Xk. O (5.9) - ,-—-

d~4 K ..-
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where

The

For

the case
the form

The

-’=2[d+K1

Bz3 ~A=—
~2

}

equation of the parabola of stability will have the

fixed cl, n, A, and X the solution of equation

(5.10)

f Orm:

(5.11)

(5.9), in
when the roots of the characteristic equation are distinct, has

-kl~
Xk(e) = Cle +c2e-~g +c,e-k3’+c4e-~g (5.12)

rest of the problem reduces to the determination of nontrivial
solutions Ci, for wfich it is sufficient to subject the solution
(eq. (5.12)) to the boundary conditions and to require the vanishing
of the appropriate determinant

form of the determinant A(ki)
of multiple roots, the function

A(ki). Avoiding the problem of the

for the different possible combinations

4)ki
‘(ki) = 5 (ki)

is introduced where

q%) = (% - %?)(% - k3) (% - %)(%

from the expression ~(ki) it follows

tions A{ki) will.exist by virtue of zeros

be an analytic function in the whole domain
variables.

(5.13)

- k3)(k2 - %) (k3 - %)

that all zeros of the func-

of b(~), end F(ki) will

of the variation of the
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.

The solution of equation (5.9) in its general case is accompanied
with considerable tithematical difficulties, and for this reason we apply

.

here the method of investigation of the eigenvalues 1 which was proposed
in references 4 and ~. The essence of the method is contained in that,
instead of the solution of equation (5.9), the parameters of the prob-
lem A, A and the two sought for roots k3?k4

—
are expressed through –

two other roots k~)q
-

of the equations
—.—.-.

1—(5.14)

and instead of finding the eigenvalues of equation (5.9) there is i.nvesti-
.

gated a system of two equations comprising the characteristic system

A+!&(,2 - $)= c1
n

F(q,7) =
dn, Y) . ~

.3(q,7)
I

where v and 7 are quantities connected with the roots

kl = ?l+i7 Q=7-i7 ‘“

-.
of the equation and —

The left part of each of
function of the variables q
a solution such as

.

(5.15)

—.

(5.16)

(5.17)

—

equations (5.15) represents.an analytic
and 7,

of the system, which permits, through

and the problem consists in finding

Y~ = yi(%A) (5.18)

use of the formulas .

.

.=



LJ
.

NACA TM 1438 17

A=- yf - 7’)

[ 1

1/2
k3,4 = -q * 7’ - 2?-#

1

(5.19)

A= Cf (q’ - 1)2+W(? -3q2)J
for each boundary problem, to compute the corresponding eigenvalues X
and to establish that value A at which an eigenvalue becomes complex.

The solution of the characteristic system is always easier to obtain
graphically if graphs of the curves defining the equations (5.15) are
penciled on one sheet in a rectangular system of coordinates q,7. The
general form of the curves of the characteristic system is shown in fig-
ure 2; the graphs of the curves corresponding to the first equation of

. the system (~rbolas) are drawn at different values A = Constant.
The rest of the problem reduces to the establishment of those values
Axi where points of the first and second real branches (5.18) coincide,.
‘andit is impossible to make any deduction concerning the eigenvalues
of the examined boundary problems.

Equating A = A*i according to equations (5.10), the velocity of

flow at which there still exists stability of the unperturbed motion,
but above which the motion my possibly become unstable is found. Con-
sequently, for each particular boundary problem it is necessary, first
of all, to compose the expression for the second equation of the charac-
teristic system A(q,7) = O.

The composition of the determinant A(~,7) is shown for the example
of a simply supported shell. For the determlnatioa of nonzero
Ci(i = 1, 2, 3, 4), expression (5.12) for xk(~) is subjected to the

boundary conditions (5.3) and the determinant of the system thus obtained
is eqwted to zero:

1

kl’

q%k2)k3J%) = e-kl

1 1 1

%2 k32 k42

e-k2 e-k3 e-% ‘0
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.
—

having been disclosed, producing in it a replacement
~ and T according to the foas (5.16) results

.

(a)

}

f3q4- ~- 2q2#)sin 7 sinh[#-2q2]1’2 16i

The expression A(q,7) for different boundary
by analogous means:

=0 (5.20)

problems is obtained

..

(b) For a shell clamped on the ends ~-= O and “~ = 1,

4T,7) = (
8i 7 [; - 2q2]1/2~OS 7 cosh(~ - 2q2)1’2 -cosh 2~ +

L .

[ 11/2
3q2sin 7 sinh # - 2#’ =0 (5.21)

(c) For a shell clamped on the end ~ = O and simply supported on
the end ~ = 1,

(F - 372) [$’ - 272]1/2sin Y cosh ~ - 2q~ ‘/2 -

}

1/2
7(72 + l-?)cos7 Sinh[% - 2112J = o (5*22)

(d) For a shell clamped on the end ~ =‘O and fr~ on the end ~ = 1, -
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ZJ(TI,7) =
[

i 87(T2 +

47(26q4 +

h2(2T2?

16T7(74 -

160(4q272

32q2? (~

19

1/2
#)2 [# - 2q2] cosh 2q +

z l/2 1/2 +
274- 4q2#) [? - 2q ] cos 7.cosh [~ - 2q2]

1/2
)sin 7 sinh[% - 2T2] -- 74 +,3q4

[~4)cOS 7 sinh 72 - 272]1/2 -

++)[
1/2 1/2

-3T4-” 72 - 2T3 [sin 7 cosh # - 2q2] -

(5.2’3)

(e) For a shell simply supported on the end ~ = O and free on
the end g = 1,

{

1/2
&q,7) = i -2T17(~ + ~2)[72 - 2q2] cosh 2q +

1/2
[T7(F - a2) 72 - F)2 + (72 - 372)2]e-2q +

1/2
%37 [% - aq (~ - 1-12)Cos 7

4q(3&4 - 76 + 31f - 5114yqsin

[ 1

1/2
cosh ~ - 2q2 +

7 ‘ifiP - @l’/2 +

[
y ~q274 - 76- 1~4# + 23TI~cos 7 sinh[% - 2T?J

1/2 +

1
[72-2v2]1’2(# +11q4#-q2# -3#)sin 7 cosh[#-2n2]1’2 = O

(5.24)
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.

It is noted that, for T = O, the equation A(~,7) = O degenerates
into the characteristic equations of the beam functions fundamental for .

the corresponding bounda~ problems. —-

For all the considered boundary problems, the graphs of equations
(5.15) were constructed. With the help of these, the critical velocities
of flow (fig. 2), that is, the velocities above which the unperturbed
motion of the shell becomes unstable, were determined. Values of the
critical velocities for three bounda~ problems (shells, simply supported
on two sides, clamped on two sides, and clamped on one_and simply sup-
ported on the other side) are quoted in table 1, for different ratios
R/l and h/R. . .

Computation of tliecritical velocitiesfor the cages shown were
conducted for n = 4 at the following values of the constants:

.

PO = 1.014 x 106 * ‘o = 3.4X104= K=l.4sec &
cm

Here will be considered first the case where, for.the class ~f thin
shells of short and medium “length,four transverse half~waves correspond
to the fundamental mode of free vibrations of the one longitudinal half-
wave. (The circle passes to an ellipse.)

It is possible to establish this situation if the frequency of free
vibrations of closed cylindrical shells for the case of hinged supyort
on the edges is investigated.

—.
The minlmun frequency of free vibrations of a simply supported

closed cylindrical shell, calculated according to the theory of shallow
shells, occurs at conditions coinciding with conditions (3.21), at which
occurs the minimum velocity of propagation of a traveling wave along the
generators of the shell in the absence of flow. —

—

Because one of the eqwtions of the characteristic iystem F(q,T) = O
does not depend on n, then from the first of equations (5.18) it follows
on first glance that, for other conditions equal, with increase of the
number of terms of the expansion n, self-induced vibration can possibly
occur at lower velocities of flow. It is seen that there exist waves,
the velocity of propagation of which (for all n, lmger””or smaller than
n = 4) is above the velocity of propagation of the traveling wave occur-
ring for n = 4. This situation has been successfully corroborated only .
for the case where the velocity of flow equals zero.
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6. APPLICATION OF TEE METHOD OF 13UBNOV-GALERKINTO THE

INVESTIGATION OF SELF-INDUCED VIBRATIONS

OF CYLINDRICAL SBIiliLS

In the preceding paragraph a method was presented for the investi-
gation of the eigenvalues of boundary problems resulting from the equ-
tion of small vibrations of cylindrical shells of medium length, which
permits the determination of exact values of the critical velocities of
flow.

An analogous method could not be successfully app~ed to the investi-
gation of the eigenvalues of the separate boundary problems using the
general equation of smll vibrations of cylindrical shells (2.3). There-
fore, for consideration of problems on self-induced-vibrations of closed
cylindrical shells and cylindrical panels according to the theory of
curved shells, a variational method was applied. First, there were deter-
mined by the variational method, the critical velocities of flow for the
class of closed cylindrical shells of medium length with the different
boundary conditions on the ends.

The values of the critical velocities resulting from the equation
of shells of medium length, having been found in the second and third
approximations, are given in table 1. lhom the table it is seen that
the second approximation according to Galerkin gives a somewhat lower
value of the critical velocity and the third approximation a somewhat
higher value of the velocity as compared with the exact value of V+;

that is, the second and third approximations bracket the exact value
of the critical velocity.

# The good convergence of the variational method permitted its appli-
cation to the investigation of problems of the seJ.f-inducedvibration
of closed cylindrical shells and cylindrical panels using the more
general equation of shalluw shells (eq. (2.3)).

In table 2 sre quoted values of the critical velocities for a
closed cylindrical shell simply supported on the ends, having been
found starting from the theory of curved shells. The information given
in table 2 with the corresponding magnitudes of the critical velocities
quoted in table 1 makes it possible to remark that the difference in
magnitude of the critical velocities does not exceed 10 to 15 percent
and, consequently, for practical purposes it is entirely justified for
the investigation of problems of the self-induced vibration of closed
cylindrical shells to make use of the simple equation of shells of
medium length.
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TAELEI.- VALUEOF THE CRITICALVELWIT!IES(m/see)OF

FLOWFCR CLOSEDCYLINDRICALSHELLS

EShellssimplysupportedon the ends (I);clampedon one

end and simplysupportedon the other(II);
and clampedonboth ends (III)]

Exact ~ the variationalmethod

$ ~
1

L 14,067.
6
1
8

5,934

~ 3,o38

& 1,758

~
6

9,378

~8 3,956

L 2,025
10
J= lj 172
12

~ 7,033

k
2,968

~ 1,520
10
1 879
E

~ 5,626

i 2,375

L I,216
10

~ 3,751

* 1,583

1 810
z

1

I 2nd approximation 3rd approximation
II

I ‘ll m

.9,18226,642L2,27816,883

9,09211,239 5,203 7,141

4,143 5,754 2,7o8 3,6%

2,397 3,330 1,648 2,W6

L2,788

5,396

2,769

I,598

9,591

4,048

2,072

1,199

7,673

3,238

1,658

5,U.5

2,159

1,105

17,761 8,197n, 266

4--L
7,493 3,4@k 4,775

3,836 1,687 2,475

2,220 1,=0 1,444

13,322.6,160 8,461

5,623 2,629 3,596

2,879.1,378 1,@4

I,666 861 1,130

2,999 1,450 1,$@

1,535 796 1,056

I

III I 11 111

2,13214,77020,44829,040~

9,352 6,332 8,~9 U, m

4,812 3,369 4,238 6>134

2,822 1,999 2,656 3,526

4,765 9,84713,93919,360

6,249 4,308 5,913 7;920

3,225 2,246 3,314 4,089

1,902 1,390 2,014 2,539

L,085 7,385U, 723 14,879

4,701 3,233 4,437 5,943

2,436 1,685 2,533 3,069

1,447 1,043 I,626 I.,976

.3,8805,908 8,578~, 903

3,776 2,5% 3,549 4,754

1,968 I.,348 2,026 2,595

5,946 3,938 5,718 7,367

2,552 1,890 2,366 3,169

1,354 1,025 1,350 I,636
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TABLE II.- VALUES OF CRITICAL VELOCITIES OF FLOW FOR

CLOSED CYLINDRICAL SHELJJS,SI@LY SUPPORTED ON

THE ENDS, FOUND BY THE VARIATIONAL MEIHOD

R By 2nd approximation
i? T

BY 3rd approximation
m/see m/see

&
6

10,858 14,770

~
8

4,939 6,498
_l_
200 1

m
2,684 3,463

1 I,689
E

2,233

~
6

7,~85 9,847

* 3,261 4,332
1

z 1 1,770
E

2,208

1 1,117
G

1,452

~
6

5,384 ~,385

&
& 8

2,449 3,167

~ 1,337 1,732
10

1 4,313
z

5,98

& 1,971 2,456
8

h 1 1,086 1,268
E
1
E

700 936

L 2)900 3,938

1 ; 1,348 1,775
E

~ 765 l,o~
10

.

.
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